customised gifts [1%:<1% 5% Five subjects receiving abacavir in CNA3005 experienced worsening of pre-existing depression compared to none in the indinavir arm. The background rates of pre-existing depression were similar in the 2 treatment arms. Laboratory Abnormalities Laboratory abnormalities in CNA3005 are listed in Table 2. Table 2. Treatment-Emergent Laboratory Abnormalities (Grades 3/4) in CNA3005 ULN = Upper limit of normal. n = Number of subjects assessed. Laboratory Parameter ZIAGEN plus Lamivudine / Zidovudine ( n = 262 ) Indinavir plus Lamivudine / Zidovudine ( n = 264 ) Elevated CPK (> 4 x ULN) 18 (7%) 18 (7%) ALT (>5.0 x ULN) 16 (6%) 16 (6%) Neutropenia ( <750/mm 3 ) 13 (5%) 13 (5%) Hypertriglyceridemia (> 750 mg/dL) 5 (2%) 3 (1%) Hyperamylasemia (>2.0 x ULN) 5 (2%) 1 ( <1%) Hyperglycemia (> 13.9 mmol/L) 2 ( <1%) 2 (> <1%) Anemia (Hgb 6.9 g/dL) 0 (0%) 3 (1%) Other Adverse Events In addition to adverse reactions in Tables 1 and 2, other adverse events observed in the expanded access program for abacavir were pancreatitis and increased GGT. Postmarketing Experience The following adverse reactions have been identified during postmarketing use. Because these reactions are reported voluntarily from a population of unknown size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Abacavir Cardiovascular : Myocardial infarction. Skin : Suspected Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) have been reported in patients receiving abacavir primarily in combination with medications known to be associated with SJS and TEN, respectively. Because of the overlap of clinical signs and symptoms between hypersensitivity to abacavir and SJS and TEN, and the possibility of multiple drug sensitivities in some patients, abacavir should be discontinued and not restarted in such cases. There have also been reports of erythema multiforme with abacavir use [see ADVERSE REACTIONS ( 6.1 )] . Abacavir, Lamivudine, and/or Zidovudine Body as a Whole : Redistribution/accumulation of body fat [see WARNINGS AND PRECAUTIONS ( 5.8 )] . Cardiovascular : Cardiomyopathy. Digestive : Stomatitis. Endocrine and Metabolic : Gynecomastia. Gastrointestinal: Anorexia and/or decreased appetite, abdominal pain, dyspepsia, oral mucosal pigmentation. General : Vasculitis, weakness. Hemic and Lymphatic : Aplastic anemia, anemia (including pure red cell aplasia and severe anemias progressing on therapy), lymphadenopathy, splenomegaly, thrombocytopenia. Hepatic : Lactic acidosis and hepatic steatosis [see WARNINGS AND PRECAUTIONS ( 5.4 )] , elevated bilirubin, elevated transaminases, posttreatment exacerbations of hepatitis B [see WARNINGS AND PRECAUTIONS (5.5)] . Hypersensitivity : Sensitization reactions (including anaphylaxis), urticaria. Musculoskeletal : Arthralgia, myalgia, muscle weakness, rhabdomyolysis. Nervous : Dizziness, paresthesia, peripheral neuropathy, seizures. Psychiatric : Insomnia and other sleep disorders. Respiratory : Abnormal breath sounds/wheezing. Skin : Alopecia, erythema multiforme, Stevens-Johnson syndrome. Drug Interactions Abacavir Methadone In a trial of 11 HIV-1-infected subjects receiving methadone-maintenance therapy with 600 mg of ZIAGEN twice daily (twice the currently recommended dose), oral methadone clearance increased [see CLINICAL PHARMACOLOGY ( 12.3 )] . This alteration will not result in a methadone dose modification in the majority of patients; however, an increased methadone dose may be required in a small number of patients. Zidovudine Agents Antagonistic with Zidovudine Concomitant use of zidovudine with the following drugs should be avoided since an antagonistic relationship has been demonstrated in vitro : Stavudine Doxorubicin Nucleoside analogues, e.g., ribavirin Hematologic/Bone Marrow Suppressive/Cytotoxic Agents Coadministration with the following drugs may increase the hematologic toxicity of zidovudine: Ganciclovir Interferon alfa Ribavirin Other bone marrow suppressive or cytotoxic agents USE IN SPECIFIC POPULATIONS Pregnancy Pregnancy Exposure Registry There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to abacavir, lamivudine and zidovudine tablets during pregnancy. Healthcare providers are encouraged to register patients by calling the Antiretroviral Pregnancy Registry (APR) at 1-800-258-4263. Risk Summary Available data from the APR show no difference in the overall risk of birth defects for abacavir, lamivudine, or zidovudine compared with the background rate for birth defects of 2.7% in the Metropolitan Atlanta Congenital Defects Program (MACDP) reference population [see Data] . The APR uses the MACDP as the U.S. reference population for birth defects in the general population. The MACDP evaluates women and infants from a limited geographic area and does not include outcomes for births that occurred at less than 20 weeks gestation. The rate of miscarriage is not reported in the APR. The estimated background rate of miscarriage in clinically recognized pregnancies in the U.S. general population is 15% to 20%. The background risk for major birth defects and miscarriage for the indicated population is unknown. In animal reproduction studies, oral administration of abacavir to pregnant rats during organogenesis resulted in fetal malformations and other embryonic and fetal toxicities at exposures 35 times the human exposure (AUC) at the recommended clinical daily dose. However, no adverse developmental effects were observed following oral administration of abacavir to pregnant rabbits during organogenesis, at exposures approximately 9 times the human exposure (AUC) at the recommended clinical dose. Oral administration of lamivudine to pregnant rabbits during organogenesis resulted in embryolethality at systemic exposure (AUC) similar to the recommended clinical dose; however, no adverse development effects were observed with oral administration of lamivudine to pregnant rats during organogenesis at plasma concentrations (C max ) 35 times the recommended clinical dose. Administration of oral zidovudine to female rats prior to mating and throughout gestation resulted in embryotoxicity at doses that produced systemic exposure (AUC) approximately 33 times higher than exposure at the recommended clinical dose. However, no embryotoxicity was observed after oral administration of zidovudine to pregnant rats during organogenesis at doses that produced systemic exposure (AUC) approximately 117 times higher than exposures at the recommended clinical dose. Administration of oral zidovudine to pregnant rabbits during organogenesis resulted in embryotoxicity at doses that produced systemic exposure (AUC) approximately 108 times higher than exposure at the recommended clinical dose. However, no embryotoxicity was observed at doses that produced systemic exposure (AUC) approximately 23 times higher than exposures at the recommended clinical dose [see Data]. Data Human Data: Abacavir Based on prospective reports to the APR of over 2,000 exposures to abacavir during pregnancy resulting in live births (including over 1,000 exposed in the first trimester), there was no difference between the overall risk of birth defects for abacavir compared with the background birth defect rate of 2.7% in a U.S. reference population of the MACDP. The prevalence of defects in live births was 2.9% (95% CI: 2.0% to 4.1%) following first trimester exposure to abacavir-containing regimens and 2.7% (95% CI: 1.9% to 3.7%) following second/third trimester exposure to abacavir-containing regimens. Abacavir has been shown to cross the placenta and concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery [see CLINICAL PHARMACOLOGY ( 12.3 )] . Lamivudine Based on prospective reports to the APR of over 11,000 exposures to lamivudine during pregnancy resulting in live births (including over 4,500 exposed in the first trimester), there was no difference between the overall risk of birth defects for lamivudine compared with the background birth defect rate of 2.7% in a U.S. reference population of the MACDP. The prevalence of birth defects in live births was 3.1% (95% CI: 2.6% to 3.6%) following first trimester exposure to lamivudine-containing regimens and 2.8% (95% CI: 2.5%, 3.3%) following second/third trimester exposure to lamivudine-containing regimens. Lamivudine pharmacokinetics were studied in pregnant women during 2 clinical trials conducted in South Africa. The trials assessed pharmacokinetics in 16 women at 36 weeks gestation using 150 mg lamivudine twice daily with zidovudine, 10 women at 38 weeks gestation using 150 mg lamivudine twice daily with zidovudine, and 10 women at 38 weeks gestation using lamivudine 300 mg twice daily without other antiretrovirals. These trials were not designed or powered to provide efficacy information. Lamivudine concentrations were generally similar in maternal, neonatal, and umbilical cord serum samples. In a subset of subjects, amniotic fluid specimens were collected following natural rupture of membranes and confirmed that lamivudine crosses the placenta in humans. Based on limited data at delivery, median (range) amniotic fluid concentrations of lamivudine were 3.9 (1.2 to 12.8) fold greater compared with paired maternal serum concentration (n = 8). Zidovudine Based on prospective reports to the APR of over 13,000 exposures to zidovudine during pregnancy resulting in live births (including over 4,000 exposed in the first trimester), there was no difference between the overall risk of birth defects for zidovudine compared with the background birth defect rate of 2.7% in a U.S. reference population of the MACDP. The prevalence of birth defects in live births was 3.2% (95% CI: 2.7% to 3.8%) following first trimester exposure to zidovudine-containing regimens and 2.8% (95% CI: 2.5%, 3.2%) following second/third trimester exposure to zidovudine-containing regimens. A randomized, double-blind, placebo-controlled trial was conducted in HIV-1-infected pregnant women to determine the utility of zidovudine for the prevention of maternal-fetal HIV-1 transmission. Zidovudine treatment during pregnancy reduced the rate of maternal-fetal HIV-1 transmission from 24.9% for infants born to placebo-treated mothers to 7.8% for infants born to mothers treated with zidovudine. There were no differences in pregnancy-related adverse events between the treatment groups. Of the 363 neonates that were evaluated, congenital abnormalities occurred with similar frequency between neonates born to mothers who received zidovudine and neonates born to mothers who received placebo. The observed abnormalities included problems in embryogenesis (prior to 14 weeks) or were recognized on ultrasound before or immediately after initiation of trial drug. See full prescribing information for RETROVIR (zidovudine) and COMBIVIR (lamivudine and zidovudine). Zidovudine has been shown to cross the placenta and concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery [see CLINICAL PHARMACOLOGY ( 12.3 )] . Animal Data: Abacavir Abacavir was administered orally to pregnant rats (at 100, 300, and 1,000 mg per kg per day) and rabbits (at 125, 350, or 700 mg per kg per day) during organogenesis (on gestation Days 6 through 17 and 6 through 20, respectively). Fetal malformations (increased incidences of fetal anasarca and skeletal malformations) or developmental toxicity (decreased fetal body weight and crown-rump length) were observed in rats at doses up to 1,000 mg per kg per day, resulting in exposures approximately 35 times the human exposure (AUC) at the recommended daily dose. No developmental effects were observed in rats at 100 mg per kg per day, resulting in exposures (AUC) 3.5 times the human exposure at the recommended daily dose. In a fertility and early embryo-fetal development study conducted in rats (at 60, 160, or 500 mg per kg per day), embryonic and fetal toxicities (increased resorptions, decreased fetal body weights) or toxicities to the offspring (increased incidence of stillbirth and lower body weights) occurred at doses up to 500 mg per kg per day. No developmental effects were observed in rats at 60 mg per kg per day, resulting in exposures (AUC) approximately 4 times the human exposure at the recommended daily dose. Studies in pregnant rats showed that abacavir is transferred to the fetus through the placenta. In pregnant rabbits, no developmental toxicities and no increases in fetal malformations occurred at up to the highest dose evaluated, resulting in exposures (AUC) approximately 9 times the human exposure at the recommended dose. Lamivudine Lamivudine was administered orally to pregnant rats (at 90, 600, and 4,000 mg per kg per day) and rabbits (at 90, 300, and 1,000 mg per kg per day and at 15, 40, and 90 mg per kg per day) during organogenesis (on gestation Days 7 through 16 [rat] and 8 through 20 [rabbit], respectively). No evidence of fetal malformations due to lamivudine was observed in rats and rabbits at doses producing plasma concentrations (C max ) approximately 35 times higher than human exposure at the recommended daily dose. Evidence of early embryolethality was seen in the rabbit at systemic exposures (AUC) similar to those observed in humans, but there was no indication of this effect in the rat at plasma concentrations (C max ) 35 times higher than human exposure at the recommended daily dose. Studies in pregnant rats showed that lamivudine is transferred to the fetus through the placenta. In the pre-and postnatal development study in rats, lamivudine was administered orally at doses of 180, 900, and 4,000 mg per kg per day (from gestation Day 6 through postnatal Day 20). In the study, development of the offspring, including fertility and reproductive performance, was not affected by maternal administration of lamivudine. Zidovudine A study in pregnant rats (at 50, 150, or 450 mg per kg per day starting 26 days prior to mating through gestation to postnatal Day 21) showed increased fetal resorptions at doses that produced systemic exposures (AUC) approximately 33 times higher than exposure at the recommended daily human dose (300 mg twice daily). However, in an oral embryo-fetal development study in rats (at 125, 250, or 500 mg per kg per day on gestation Days 6 through 15), no fetal resorptions were observed at doses that produced systemic exposure (AUC) approximately 117 times higher than exposures at the recommended daily human dose. An oral embryo-fetal development study in rabbits (at 75, 150, or 500 mg per kg per day on gestation Days 6 through 18) showed increased fetal resorptions at the 500-mg-per-kg-per-day dose which produced systemic exposures (AUC) approximately 108 times higher than exposure at the recommended daily human dose; however, no fetal resorptions were noted at doses up to 150 mg per kg per day, which produced systemic exposure (AUC) approximately 23 times higher than exposures at the recommended daily human dose. These oral embryo-fetal development studies in the rat and rabbit revealed no evidence of fetal malformations with zidovudine. In another developmental toxicity study, pregnant rats (dosed at 3,000 mg per kg per day from Days 6 through 15 of gestation) showed marked maternal toxicity and an increased incidence of fetal malformations at exposures greater than 300 times the recommended daily human dose based on AUC. However, there were no signs of fetal malformations at doses up to 600 mg per kg per day. Lactation Risk Summary The Centers for Disease Control and Prevention recommend that HIV-1-infected mothers in the United States not breastfeed their infants to avoid risking postnatal transmission of HIV-1 infection. Abacavir, lamivudine and zidovudine are present in human milk. There is no information on the effects of abacavir, lamivudine and zidovudine on the breastfed infant or the effects of the drug on milk production. Because of the potential for (1) HIV-1 transmission (in HIV-negative infants), (2) developing viral resistance (in HIV-positive infants), and (3) serious adverse reactions in a breastfed infant, instruct mothers not to breastfeed if they are receiving abacavir, lamivudine and zidovudine tablets. Pediatric Use Abacavir, lamivudine and zidovudine tablet is not recommended in children who weigh less than 40 kg because it is a fixed-dose tablet that cannot be adjusted for these patient populations [see DOSAGE AND ADMINISTRATION ( 2.3 )] . Therapy-Experienced Pediatric Trial A randomized, double-blind trial, CNA3006, compared ZIAGEN plus lamivudine and zidovudine versus lamivudine and zidovudine in pediatric subjects, most of whom were extensively pretreated with nucleoside analogue antiretroviral agents. Subjects in this trial had a limited response to abacavir. Geriatric Use Clinical trials of abacavir, lamivudine, and zidovudine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, caution should be exercised in the administration of abacavir, lamivudine and zidovudine tablets in elderly patients reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy [see CLINICAL PHARMACOLOGY ( 12.3 )] . Patients with Impaired Renal Function Abacavir, lamivudine and zidovudine tablet is not recommended for patients with creatinine clearance less than 50 mL per min because abacavir, lamivudine and zidovudine tablet is a fixed-dose combination and the dosage of the individual components cannot be adjusted. If a dose reduction of the lamivudine or zidovudine components of abacavir, lamivudine and zidovudine tablet is required for patients with renal impairment then the individual components should be used [see DOSAGE AND ADMINISTRATION ( 2.3 ), CLINICAL PHARMACOLOGY ( 12.3 )] . Patients with Impaired Hepatic Function Abacavir, lamivudine and zidovudine tablet is a fixed-dose combination and the dosage of the individual components cannot be adjusted. If a dose reduction of abacavir, a component of abacavir, lamivudine and zidovudine tablet, is required for patients with mild hepatic impairment (Child-Pugh Class A), then the individual components should be used [see CLINICAL PHARMACOLOGY ( 12.3 )] . The safety, efficacy, and pharmacokinetic properties of abacavir have not been established in patients with moderate (Child-Pugh Class B) or severe (Child-Pugh Class C) hepatic impairment; therefore, abacavir, lamivudine and zidovudine tablets are contraindicated in these patients [see CONTRAINDICATIONS ( 4 )] . Zidovudine is primarily eliminated by hepatic metabolism and zidovudine concentrations are increased in patients with impaired hepatic function, which may increase the risk of hematologic toxicity. Frequent monitoring of hematologic toxicities is advised. Overdosage There is no known specific treatment for overdose with abacavir, lamivudine and zidovudine tablets. If overdose occurs, the patient should be monitored and standard supportive treatment applied as required. Abacavir It is not known whether abacavir can be removed by peritoneal dialysis or hemodialysis. Lamivudine Because a negligible amount of lamivudine was removed via (4-hour) hemodialysis, continuous ambulatory peritoneal dialysis, and automated peritoneal dialysis, it is not known if continuous hemodialysis would provide clinical benefit in a lamivudine overdose event. Zidovudine Acute overdoses of zidovudine have been reported in pediatric patients and adults. These involved exposures up to 50 grams. No specific symptoms or signs have been identified following acute overdosage with zidovudine apart from those listed as adverse events such as fatigue, headache, vomiting, and occasional reports of hematological disturbances. Patients recovered without permanent sequelae. Hemodialysis and peritoneal dialysis appear to have a negligible effect on the removal of zidovudine, while elimination of its primary metabolite, 3 - azido-3 -deoxy-5 - O -β- D -glucopyranuronosylthymidine (GZDV), is enhanced. Abacavir, Lamivudine and ZidovudineTablets Description Abacavir, lamivudine and zidovudine tablets contain the following 3 synthetic nucleoside analogues: abacavir (ZIAGEN ), lamivudine (also known as EPIVIR or 3TC), and zidovudine (also known as RETROVIR , azidothymidine, or ZDV) with inhibitory activity against HIV-1. Abacavir, lamivudine and zidovudine tablets are for oral administration. Each film-coated tablet contains the active ingredients 300 mg of abacavir as abacavir sulfate, 150 mg of lamivudine, and 300 mg of zidovudine, and the inactive ingredients crospovidone, magnesium stearate, microcrystalline cellulose, povidone, and yellow ferric oxide. The tablets are coated with a film opadry green that is made of FD&C blue no. 2, polyethylene glycol, polyvinyl alcohol, talc, titanium dioxide and yellow ferric oxide. Abacavir Sulfate The chemical name of abacavir sulfate is (1 S,cis )-4-[2-amino-6-(cyclopropylamino)-9 H -purin-9-yl]-2-cyclopentene-1-methanol sulfate (salt) (2:1). Abacavir sulfate is the enantiomer with 1S , 4R absolute configuration on the cyclopentene ring. It has a molecular formula of (C 14 H 18 N 6 O) 2 H 2 SO 4 and a molecular weight of 670.74 g per mol. It has the following structural formula: Abacavir sulfate is a white to off-white powder and soluble in water. Dosages are expressed in terms of abacavir. Lamivudine The chemical name of lamivudine is (2R,cis)-4-amino-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one, 0.2 hydrate. Lamivudine is the (-) enantiomer of a dideoxy analogue of cytidine. Lamivudine has also been referred to as (-)2',3'-dideoxy, 3'-thiacytidine. It has a molecular formula of C 8 H 11 N 3 O 3 S 0.2H 2 O and a molecular weight of 232.86 g per mol. It has the following structural formula: Lamivudine is a white to off-white solid and is soluble in water. Zidovudine The chemical name of zidovudine is 3'-azido-3'-deoxythymidine. It has a molecular formula of C 10 H 13 N 5 O 4 and a molecular weight of 267.24 g per mol. It has the following structural formula: Zidovudine is a white to yellowish powder with a solubility of 20.1 mg/mL in water at 25 C. Abacavir, Lamivudine and ZidovudineTablets - Clinical Pharmacology Mechanism of Action Abacavir, lamivudine and zidovudine tablet is an antiretroviral agent [see Microbiology ( 12.4 )] . Pharmacokinetics Pharmacokinetics in Adults In a single-dose, 3-way crossover bioavailability trial of 1 abacavir, lamivudine and zidovudine tablet versus 1 ZIAGEN tablet (300 mg), 1 EPIVIR tablet (150 mg), plus 1 RETROVIR tablet (300 mg) administered simultaneously in healthy subjects (n = 24), there was no difference in the extent of absorption, as measured by the area under the plasma concentration-time curve (AUC) and maximal peak concentration (Cmax), of all 3 components. One abacavir, lamivudine and zidovudine tablet was bioequivalent to 1 ZIAGEN tablet (300 mg), 1 EPIVIR tablet (150 mg), plus 1 RETROVIR tablet (300 mg) following single-dose administration to fasting healthy subjects (n = 24). Abacavir: Following oral administration, abacavir is rapidly absorbed and extensively distributed. After oral administration of 300 mg of abacavir twice daily in 20 subjects, Cmax was 3.0 0.89 mcg per mL (mean SD) and AUC(0 to 12 h) was 6.02 1.73 mcg hour per mL. Binding of abacavir to human plasma proteins is approximately 50% and was independent of concentration. Total blood and plasma drug-related radioactivity concentrations are identical, demonstrating that abacavir readily distributes into erythrocytes. The primary routes of elimination of abacavir are metabolism by alcohol dehydrogenase to form the 5 -carboxylic acid and glucuronyl transferase to form the 5 -glucuronide. Lamivudine: Following oral administration, lamivudine is rapidly absorbed and extensively distributed. Binding to plasma protein is low. Approximately 70% of an intravenous dose of lamivudine is recovered as unchanged drug in the urine. Metabolism of lamivudine is a minor route of elimination. In humans, the only known metabolite is the trans-sulfoxide metabolite (approximately 5% of an oral dose after 12 hours). Zidovudine: Following oral administration, zidovudine is rapidly absorbed and extensively distributed. Binding to plasma protein is low. Zidovudine is eliminated primarily by hepatic metabolism. The major metabolite of zidovudine is GZDV. GZDV AUC is about 3-fold greater than the zidovudine AUC. Urinary recovery of zidovudine and GZDV accounts for 14% and 74% of the dose following oral administration, respectively. A second metabolite, 3 -amino-3 deoxythymidine (AMT), has been identified in plasma. The AMT AUC was one-fifth of the zidovudine AUC. In humans, abacavir, lamivudine, and zidovudine are not significantly metabolized by cytochrome P450 enzymes. The pharmacokinetic properties of abacavir, lamivudine, and zidovudine in fasting subjects are summarized in Table 3. Table 3. Pharmacokinetic Parameters * for Abacavir, Lamivudine, and Zidovudine in Adults Parameter Abacavir Lamivudine Zidovudine * Data presented as mean standard deviation except where noted. Approximate range. Oral bioavailability (%) 86 25 n = 6 86 16 n = 12 64 10 n = 5 Apparent volume of distribution (L/kg) 0.86 0.15 n = 6 1.3 0.4 n = 20 1.6 0.6 n = 8 Systemic clearance (L/h/kg) 0.80 0.24 n = 6 0.33 0.06 n = 20 1.6 0.6 n = 6 Renal clearance (L/h/kg) 0.007 0.008 n = 6 0.22 0.06 n = 20 0.34 0.05 n = 9 Elimination half-life (h) 1.45 0.32 n = 20 5 to 7 0.5 to 3 Effect of Food on Absorption of Abacavir, Lamivudine and Zidovudine Tablets Administration with food in a single-dose bioavailability trial resulted in lower Cmax, similar to results observed previously for the reference formulations. The average [90% CI] decrease in abacavir, lamivudine, and zidovudine Cmax was 32% [24% to 38%], 18% [10% to 25%], and 28% [13% to 40%], respectively, when administered with a high-fat meal, compared with administration under fasted conditions. Administration of abacavir, lamivudine and zidovudine tablets with food did not alter the extent of abacavir, lamivudine, and zidovudine absorption (AUC), as compared with administration under fasted conditions (n = 24) [see DOSAGE AND ADMINISTRATION ( 2.2 )] . Specific Populations Renal Impairment: Abacavir, Lamivudine and Zidovudine Tablets The effect of renal impairment on the combination of abacavir, lamivudine, and zidovudine has not been evaluated (see the U.S. prescribing information for the individual abacavir, lamivudine, and zidovudine components). Hepatic Impairment: Abacavir, Lamivudine and Zidovudine Tablets The effect of hepatic impairment on the combination of abacavir, lamivudine, and zidovudine has not been evaluated (see the U.S. prescribing information for the individual abacavir, lamivudine, and zidovudine components). Pregnancy: Abacavir Abacavir pharmacokinetics were studied in 25 pregnant women during the last trimester of pregnancy receiving abacavir 300 mg twice daily. Abacavir exposure (AUC) during pregnancy was similar to those in postpartum and in HIV-infected non-pregnant historical controls. Consistent with passive diffusion of abacavir across the placenta, abacavir concentrations in neonatal plasma cord samples at birth were essentially equal to those in maternal plasma at delivery. Lamivudine Lamivudine pharmacokinetics were studied in 36 pregnant women during 2 clinical trials conducted in South Africa. Lamivudine pharmacokinetics in pregnant women were similar to those seen in non-pregnant adults and in postpartum women. Lamivudine concentrations were generally similar in maternal, neonatal, and umbilical cord serum samples. Zidovudine Zidovudine pharmacokinetics have been studied in a Phase 1 trial of 8 women during the last trimester of pregnancy. Zidovudine pharmacokinetics were similar to those of nonpregnant adults. Consistent with passive transmission of the drug across the placenta, zidovudine concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery. Although data are limited, methadone maintenance therapy in 5 pregnant women did not appear to alter zidovudine pharmacokinetics. Geriatric Patients: The pharmacokinetics of abacavir, lamivudine, and zidovudine have not been studied in subjects over 65 years of age. Gender : There are no significant or clinically relevant gender differences in the pharmacokinetics of the individual components (abacavir, lamivudine, or zidovudine) based on the available information that was analyzed for each of the individual components. Race: Abacavir and Lamivudine There are no significant or clinically relevant racial differences in pharmacokinetics of abacavir or lamivudine based on the available information that was analyzed for each of the individual components. Zidovudine The pharmacokinetics of zidovudine with respect to race have not been determined. Drug Interactions The drug interaction trials described were conducted with abacavir, lamivudine or zidovudine as single entities; no drug interaction trials have been conducted using abacavir, lamivudine and zidovudine tablets. No clinically significant drug interactions are expected between abacavir, lamivudine, and zidovudine. Cytochrome P450 Enzymes: Abacavir, lamivudine, and zidovudine are not significantly metabolized by cytochrome P450 enzymes; therefore, it is unlikely that clinically significant drug interactions will occur with drugs metabolized through these pathways. Glucuronyl Transferase : Due to the common metabolic pathways of abacavir and zidovudine via glucuronyl transferase, 15 HIV-1-infected subjects were enrolled in a crossover trial evaluating single doses of abacavir (600 mg), lamivudine (150 mg), and zidovudine (300 mg) alone or in combination. Analysis showed no clinically relevant changes in the pharmacokinetics of abacavir with the addition of lamivudine or zidovudine or the combination of lamivudine and zidovudine. Lamivudine exposure (AUC decreased 15%) and zidovudine exposure (AUC increased 10%) did not show clinically relevant changes with concurrent abacavir. Other Interactions Ethanol : Abacavir has no effect on the pharmacokinetic properties of ethanol. Ethanol decreases the elimination of abacavir causing an increase in overall exposure. Interferon Alfa : There was no significant pharmacokinetic interaction between lamivudine and interferon alfa in a trial of 19 healthy male subjects. Methadone : In a trial of 11 HIV-1-infected subjects receiving methadone-maintenance therapy (40 mg and 90 mg daily), with 600 mg of abacavir twice daily (twice the currently recommended dose), oral methadone clearance increased 22% (90% CI: 6% to 42%) [see DRUG INTERACTIONS ( 7.1 )] . The addition of methadone has no clinically significant effect on the pharmacokinetic properties of abacavir. Ribavirin : In vitro data indicate ribavirin reduces phosphorylation of lamivudine, stavudine, and zidovudine. However, no pharmacokinetic (e.g., plasma concentrations or intracellular triphosphorylated active metabolite concentrations) or pharmacodynamic (e.g., loss of HIV-1/HCV virologic suppression) interaction was observed when ribavirin and lamivudine (n = 18), stavudine (n = 10), or zidovudine (n = 6) were coadministered as part of a multi-drug regimen to HIV-1/HCV co-infected subjects [see WARNINGS AND PRECAUTIONS ( 5.6 )] . The effects of other coadministered drugs on abacavir, lamivudine, or zidovudine are provided in Table 4. Table 4. Effect of Coadministered Drugs on Abacavir, Lamivudine, and Zidovudine AUC * = Increase; = Decrease; = No significant change; AUC = Area under the concentration versus time curve; CI = Confidence interval. * See DRUG INTERACTIONS (7) for additional information on drug interactions. The drug-drug interaction was only evaluated in males. Estimated range of percent difference. Coadministered Drug and Dose Drug and Dose n Concentrations of Abacavir , Lamivudine , or Zidovudine Concentration of Coadministered Drug AUC Variability Ethanol 0.7 g/kg Abacavir single 600 mg 24 41% 90% CI: 35% to 48% Nelfinavir 750 mg every 8 h x 7 to 10 days Lamivudine single 150 mg 11 10% 95% CI: 1% to 20% Trimethoprim 160 mg/ Sulfamethoxazole 800 mg daily x 5 days Lamivudine single 300 mg 14 43% 90% CI: 32% to 55% Atovaquone 750 mg every 12 h with food Zidovudine 200 mg ever seeking
your beloved you'll Abacavir, Lamivudine and ZidovudineTablets earlier than
EmoticonEmoticon