what was responsible for Alogliptin and Pioglitazone Tablets stressful

workplace Alogliptin and Pioglitazone Tablets thrust back
 
Photo :Alogliptin and Pioglitazone Tablets

well-deserved [60:<0.1%) patients treated with active comparators or placebo. In the EXAMINE trial (a cardiovascular outcomes trial of patients with type 2 diabetes and high cardiovascular (CV) risk), acute pancreatitis was reported in ten (0.4%) patients treated with alogliptin and in seven (0.3%) patients treated with placebo. It is unknown whether patients with a history of pancreatitis are at increased risk for pancreatitis while using Alogliptin and Pioglitazone Tablets . After initiation of Alogliptin and Pioglitazone Tablets, patients should be observed for signs and symptoms of pancreatitis. If pancreatitis is suspected, Alogliptin and Pioglitazone Tablets should promptly be discontinued and appropriate management should be initiated. Hypersensitivity Reactions There have been postmarketing reports of serious hypersensitivity reactions in patients treated with alogliptin. These reactions include anaphylaxis, angioedema and severe cutaneous adverse reactions, including Stevens-Johnson syndrome. If a serious hypersensitivity reaction is suspected, discontinue Alogliptin and Pioglitazone Tablets, assess for other potential causes for the event and institute alternative treatment for diabetes [see Adverse Reactions (6.3) ]. Use caution in patients with a history of angioedema with another dipeptidyl peptidase-4 (DPP-4) inhibitor because it is unknown whether such patients will be predisposed to angioedema with Alogliptin and Pioglitazone Tablets. Hepatic Effects There have been postmarketing reports of fatal and nonfatal hepatic failure in patients taking pioglitazone or alogliptin, although some of the reports contain insufficient information necessary to establish the probable cause [see Adverse Reactions (6.3) ] . In glycemic control trials of alogliptin in patients with type 2 diabetes, serum alanine aminotransferase (ALT) elevations greater than three times the upper limit of normal (ULN) were reported in 1.3% of patients treated with alogliptin 25 mg and 1.7% of patients treated with active comparators or placebo. In the EXAMINE trial (a cardiovascular outcomes trial of patients with type 2 diabetes and high cardiovascular (CV) risk), increases in serum alanine aminotransferase three times the upper limit of the reference range occurred in 2.4% of patients treated with alogliptin and in 1.8% of patients treated with placebo. Patients with type 2 diabetes may have fatty liver disease or cardiac disease with episodic congestive heart failure, both of which may cause liver test abnormalities, and they may also have other forms of liver disease, many of which can be treated or managed. Therefore, obtaining a liver test panel (ALT, aspartate aminotransferase [AST], alkaline phosphatase and total bilirubin) and assessing the patient is recommended before initiating Alogliptin and Pioglitazone Tablets therapy. In patients with abnormal liver tests, Alogliptin and Pioglitazone Tablets should be initiated with caution. Measure liver tests promptly in patients who report symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine or jaundice. In this clinical context, if the patient is found to have abnormal liver tests (ALT greater than three times the upper limit of the reference range), Alogliptin and Pioglitazone Tablets treatment should be interrupted and an investigation done to establish the probable cause. Alogliptin and Pioglitazone Tablets should not be restarted in these patients without another explanation for the liver test abnormalities. Edema Pioglitazone In controlled clinical trials, edema was reported more frequently in patients treated with pioglitazone than in placebo-treated patients and is dose-related [see Adverse Reactions (6.1) ]. In postmarketing experience, reports of new onset or worsening of edema have been received. Alogliptin and Pioglitazone Tablets should be used with caution in patients with edema. Because thiazolidinediones, including pioglitazone, can cause fluid retention, which can exacerbate or lead to congestive heart failure, Alogliptin and Pioglitazone Tablets should be used with caution in patients at risk for congestive heart failure. Patients treated with Alogliptin and Pioglitazone Tablets should be monitored for signs and symptoms of congestive heart failure [see Boxed Warning , Warnings and Precautions (5.1) and Patient Counseling Information (17) ] . Fractures Pioglitazone In PROactive (the Prospective Pioglitazone Clinical Trial in Macrovascular Events), 5238 patients with type 2 diabetes and a history of macrovascular disease were randomized to pioglitazone (N=2605), force-titrated up to 45 mg daily or placebo (N=2633) in addition to standard of care. During a mean follow-up of 34.5 months, the incidence of bone fracture in females was 5.1% (44/870) for pioglitazone versus 2.5% (23/905) for placebo. This difference was noted after the first year of treatment and persisted during the course of the study. The majority of fractures observed in female patients were nonvertebral fractures including lower limb and distal upper limb. No increase in the incidence of fracture was observed in men treated with pioglitazone (1.7%) versus placebo (2.1%). The risk of fracture should be considered in the care of patients, especially female patients, treated with pioglitazone and attention should be given to assessing and maintaining bone health according to current standards of care. Urinary Bladder Tumors Pioglitazone Tumors were observed in the urinary bladder of male rats in the two-year carcinogenicity study [see Nonclinical Toxicology (13.1) ] . In addition, during the three year PROactive clinical trial, 14 patients out of 2605 (0.54%) randomized to pioglitazone and 5 out of 2633 (0.19%) randomized to placebo were diagnosed with bladder cancer. After excluding patients in whom exposure to study drug was less than one year at the time of diagnosis of bladder cancer, there were six (0.23%) cases on pioglitazone and two (0.08%) cases on placebo. After completion of the trial, a large subset of patients was observed for up to ten additional years, with little additional exposure to pioglitazone. During the 13 years of both PROactive and observational follow-up, the occurrence of bladder cancer did not differ between patients randomized to pioglitazone or placebo (HR =1.00; [95% CI: 0.59 1.72]). Findings regarding the risk of bladder cancer in patients exposed to pioglitazone vary among observational studies; some did not find an increased risk of bladder cancer associated with pioglitazone, while others did. A large prospective ten year observational cohort study conducted in the United States found no statistically significant increase in the risk of bladder cancer in diabetic patients ever exposed to pioglitazone, compared to those never exposed to pioglitazone (HR =1.06 [95% CI 0.89 1.26]). A retrospective cohort study conducted with data from the United Kingdom found a statistically significant association between ever exposure to pioglitazone and bladder cancer (HR: 1.63; [95% CI: 1.22 2.19]). Associations between cumulative dose or cumulative duration of exposure to pioglitazone and bladder cancer were not detected in some studies including the ten year observational study in the U.S., but were in others. Inconsistent findings and limitations inherent in these and other studies preclude conclusive interpretations of the observational data. Pioglitazone may be associated with an increase in the risk of urinary bladder tumors. There are insufficient data to determine whether pioglitazone is a tumor promoter for urinary bladder tumors. Consequently, Alogliptin and Pioglitazone Tablets should not be used in patients with active bladder cancer and the benefits of glycemic control versus unknown risks for cancer recurrence with Alogliptin and Pioglitazone Tablets should be considered in patients with a prior history of bladder cancer. Use with Medications Known to Cause Hypoglycemia Insulin and insulin secretagogues, such as sulfonylureas, are known to cause hypoglycemia. Therefore, a lower dose of insulin or insulin secretagogue may be required to minimize the risk of hypoglycemia when used in combination with Alogliptin and Pioglitazone Tablets. Macular Edema Pioglitazone Macular edema has been reported in postmarketing experience in diabetic patients who were taking pioglitazone or another thiazolidinedione. Some patients presented with blurred vision or decreased visual acuity, but others were diagnosed on routine ophthalmologic examination. Most patients had peripheral edema at the time macular edema was diagnosed. Some patients had improvement in their macular edema after discontinuation of their thiazolidinedione. Patients with diabetes should have regular eye exams by an ophthalmologist according to current standards of care. Patients with diabetes who report any visual symptoms should be promptly referred to an ophthalmologist, regardless of the patient's underlying medications or other physical findings [see Adverse Reactions (6.1) ]. Severe and Disabling Arthralgia There have been postmarketing reports of severe and disabling arthralgia in patients taking DPP-4 inhibitors. The time to onset of symptoms following initiation of drug therapy varied from one day to years. Patients experienced relief of symptoms upon discontinuation of the medication. A subset of patients experienced a recurrence of symptoms when restarting the same drug or a different DPP-4 inhibitor. Consider DPP-4 inhibitors as a possible cause for severe joint pain and discontinue drug if appropriate. Bullous Pemphigoid Postmarketing cases of bullous pemphigoid requiring hospitalization have been reported with DPP-4 inhibitor use. In reported cases, patients typically recovered with topical or systemic immunosuppressive treatment and discontinuation of the DPP-4 inhibitor. Tell patients to report development of blisters or erosions while receiving Alogliptin and Pioglitazone Tablets. If bullous pemphigoid is suspected, Alogliptin and Pioglitazone Tablets should be discontinued and referral to a dermatologist should be considered for diagnosis and appropriate treatment. Macrovascular Outcomes There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with Alogliptin and Pioglitazone Tablets or any other antidiabetic drug. Adverse Reactions The following serious adverse reactions are described below or elsewhere in the prescribing information: Congestive Heart Failure [see Warnings and Precautions (5.1) ] Pancreatitis [see Warnings and Precautions (5.2) ] Hypersensitivity Reactions [see Warnings and Precautions (5.3) ] Hepatic Effects [see Warnings and Precautions (5.4) ] Severe and Disabling Arthralgia [see Warnings and Precautions (5.10) ] Bullous Pemphigoid [see Warnings and Precautions (5.11) ] Clinical Trials Experience Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. Alogliptin and Pioglitazone Over 1500 patients with type 2 diabetes have received alogliptin coadministered with pioglitazone in four large, randomized, double-blind, controlled clinical trials. The mean exposure to Alogliptin and Pioglitazone Tablets was 29 weeks with more than 100 subjects treated for more than one year. The studies consisted of two placebo-controlled studies of 16 to 26 weeks in duration and two active-controlled studies of 26 weeks and 52 weeks in duration. In the Alogliptin and Pioglitazone Tablets arm, the mean duration of diabetes was approximately six years, the mean body mass index (BMI) was 31 kg/m 2 (54% of patients had a BMI 30 kg/m 2 ), and the mean age was 54 years (16% of patients 65 years of age). In a pooled analysis of these four controlled clinical studies, the overall incidence of adverse reactions was 65% in patients treated with Alogliptin and Pioglitazone Tablets compared to 57% treated with placebo. Overall discontinuation of therapy due to adverse reactions was 2.5% with Alogliptin and Pioglitazone Tablets compared to 2.0% with placebo, 3.7% with pioglitazone or 1.3% with alogliptin. Adverse reactions reported in 4% of patients treated with Alogliptin and Pioglitazone Tablets and more frequently than in patients who received alogliptin, pioglitazone or placebo are summarized in Table 1 . Table 1. Adverse Reactions Reported in 4% of Patients Treated with Alogliptin and Pioglitazone Tablets and More Frequently than in Patients Receiving Either Alogliptin, Pioglitazone or Placebo Number of Patients (%) Alogliptin and Pioglitazone Tablets * Alogliptin Pioglitazone Placebo N=1533 N=446 N=949 N=153 * Alogliptin and Pioglitazone Tablets includes data pooled for patients receiving alogliptin 25 mg and 12.5 mg combined with pioglitazone 15 mg, 30 mg and 45 mg Alogliptin includes data pooled for patients receiving alogliptin 25 mg and 12.5 mg Pioglitazone includes data pooled for patients receiving pioglitazone 15 mg, 30 mg and 45 mg Nasopharyngitis 75 (4.9) 21 (4.7) 37 (3.9) 6 (3.9) Back Pain 64 (4.2) 9 (2.0) 32 (3.4) 5 (3.3) Upper Respiratory Tract Infection 63 (4.1) 19 (4.3) 26 (2.7) 5 (3.3) Alogliptin Add-On Therapy to a Thiazolidinedione In addition, in a 26 week, placebo-controlled, double-blind study, patients inadequately controlled on a thiazolidinedione alone or in combination with metformin or a sulfonylurea were treated with add-on alogliptin therapy or placebo; the adverse reactions reported in 5% of patients and more frequently than in patients who received placebo was influenza (alogliptin, 5.5%; placebo, 4.1%). Hypoglycemia In a 26 week, placebo-controlled factorial study with alogliptin in combination with pioglitazone on background therapy with metformin, the incidence of subjects reporting hypoglycemia was 0.8%, 0% and 3.8% for alogliptin 25 mg with pioglitazone 15 mg, 30 mg or 45 mg, respectively; 2.3% for alogliptin 25 mg; 4.7%, 0.8% and 0.8% for pioglitazone 15 mg, 30 mg or 45 mg, respectively; and 0.8% for placebo. In a 26 week, active-controlled, double-blind study with alogliptin alone, pioglitazone alone or alogliptin coadministered with pioglitazone in patients inadequately controlled on diet and exercise, the incidence of hypoglycemia was 3% on alogliptin 25 mg with pioglitazone 30 mg, 0.6% on alogliptin 25 mg and 1.8% on pioglitazone 30 mg. In a 52 week, active-controlled, double-blind study of alogliptin as add-on therapy to the combination of pioglitazone 30 mg and metformin compared to the titration of pioglitazone 30 mg to 45 mg and metformin, the incidence of subjects reporting hypoglycemia was 4.5% in the alogliptin 25 mg with pioglitazone 30 mg and metformin group versus 1.5% in the pioglitazone 45 mg and metformin group. Alogliptin A total of 14,778 patients with type 2 diabetes participated in 14 randomized, double-blind, controlled clinical trials of whom 9052 subjects were treated with alogliptin, 3469 subjects were treated with placebo and 2257 were treated with an active comparator. The mean duration of diabetes was seven years, the mean body mass index (BMI) was 31 kg/m 2 (49% of patients had a BMI 30 kg/m 2 ) and the mean age was 58 years (26% of patients 65 years of age). The mean exposure to alogliptin was 49 weeks with 3348 subjects treated for more than one year. In a pooled analysis of these 14 controlled clinical trials, the overall incidence of adverse reactions was 73% in patients treated with alogliptin 25 mg compared to 75% with placebo and 70% with active comparator. Overall discontinuation of therapy due to adverse reactions was 6.8% with alogliptin 25 mg compared to 8.4% with placebo or 6.2% with active comparator. Adverse reactions reported in 4% of patients treated with alogliptin 25 mg and more frequently than in patients who received placebo are summarized in Table 2. Table 2. Adverse Reactions Reported in 4% Patients Treated with Alogliptin 25 mg and More Frequently Than in Patients Given Placebo in Pooled Studies Number of Patients (%) Alogliptin 25 mg Placebo Active Comparator N=6447 N=3469 N=2257 Nasopharyngitis 309 (4.8) 152 (4.4) 113 (5.0) Upper Respiratory Tract Infection 287 (4.5) 121 (3.5) 113 (5.0) Headache 278 (4.3) 101 (2.9) 121 (5.4) Hypoglycemia Hypoglycemic events were documented based upon a blood glucose value and/or clinical signs and symptoms of hypoglycemia. In the monotherapy study, the incidence of hypoglycemia was 1.5% in patients treated with alogliptin compared to 1.6% with placebo. The use of alogliptin as add-on therapy to glyburide or insulin did not increase the incidence of hypoglycemia compared to placebo. In a monotherapy study comparing alogliptin to a sulfonylurea in elderly patients, the incidence of hypoglycemia was 5.4% with alogliptin compared to 26% with glipizide. In the EXAMINE trial, the incidence of investigator reported hypoglycemia was 6.7% in patients receiving alogliptin and 6.5% in patients receiving placebo. Serious adverse reactions of hypoglycemia were reported in 0.8% of patients treated with alogliptin and in 0.6% of patients treated with placebo. Renal Impairment In glycemic control trials in patients with type 2 diabetes, 3.4% of patients treated with alogliptin and 1.3% of patients treated with placebo had renal function adverse reactions. The most commonly reported adverse reactions were renal impairment (0.5% for alogliptin and 0.1% for active comparators or placebo), decreased creatinine clearance (1.6% for alogliptin and 0.5% for active comparators or placebo) and increased blood creatinine (0.5% for alogliptin and 0.3% for active comparators or placebo) [see Use in Specific Populations (8.6) ] . In the EXAMINE trial of high CV risk type 2 diabetes patients, 23% of patients treated with alogliptin and 21% of patients treated with placebo had an investigator reported renal impairment adverse reaction. The most commonly reported adverse reactions were renal impairment (7.7% for alogliptin and 6.7% for placebo), decreased glomerular filtration rate (4.9% for alogliptin and 4.3% for placebo) and decreased renal clearance (2.2% for alogliptin and 1.8% for placebo). Laboratory measures of renal function were also assessed. Estimated glomerular filtration rate decreased by 25% or more in 21.1% of patients treated with alogliptin and 18.7% of patients treated with placebo. Worsening of chronic kidney disease stage was seen in 16.8% of patients treated with alogliptin and in 15.5% of patients treated with placebo. Pioglitazone Over 8500 patients with type 2 diabetes have been treated with pioglitazone in randomized, double-blind, controlled clinical trials, including 2605 patients with type 2 diabetes and macrovascular disease treated with pioglitazone in the PROactive clinical trial. In these trials, over 6000 patients have been treated with pioglitazone for six months or longer, over 4500 patients have been treated with pioglitazone for one year or longer, and over 3000 patients have been treated with pioglitazone for at least two years. Common Adverse Reactions: 16 to 26 Week Monotherapy Trials A summary of the incidence and type of common adverse reactions reported in three pooled 16 to 26 week placebo-controlled monotherapy trials of pioglitazone is provided in Table 3 . Terms that are reported represent those that occurred at an incidence of> 5% and more commonly in patients treated with pioglitazone than in patients who received placebo. None of these adverse reactions were related to pioglitazone dose. Table 3. Three Pooled 16 to 26 Week Placebo-Controlled Clinical Trials of Pioglitazone Monotherapy: Adverse Reactions Reported at an Incidence >5% and More Commonly in Patients Treated with Pioglitazone than in Patients Treated with Placebo % of Patients Placebo N=259 Pioglitazone N=606 Upper Respiratory Tract Infection 8.5 13.2 Headache 6.9 9.1 Sinusitis 4.6 6.3 Myalgia 2.7 5.4 Pharyngitis 0.8 5.1 Congestive Heart Failure A summary of the incidence of adverse reactions related to congestive heart failure for the 16 to 24 week add-on to sulfonylurea trials, for the 16 to 24 week add-on to insulin trials, and for the 16 to 24 week add-on to metformin trials were (at least one congestive heart failure, 0.2% to 1.7%; hospitalized due to congestive heart failure, 0.2% to 0.9%). None of the reactions were fatal. Patients with type 2 diabetes and NYHA class II or early class III congestive heart failure were randomized to receive 24 weeks of double-blind treatment with either pioglitazone at daily doses of 30 mg to 45 mg (N=262) or glyburide at daily doses of 10 mg to 15 mg (N=256). A summary of the incidence of adverse reactions related to congestive heart failure reported in this study is provided in Table 4 . Table 4. Treatment-Emergent Adverse Reactions of Congestive Heart Failure (CHF) in Patients with NYHA Class II or III Congestive Heart Failure Treated with Pioglitazone or Glyburide Number (%) of Subjects Pioglitazone N=262 Glyburide N=256 Death due to cardiovascular causes (adjudicated) 5 (1.9%) 6 (2.3%) Overnight hospitalization for worsening CHF (adjudicated) 26 (9.9%) 12 (4.7%) Emergency room visit for CHF (adjudicated) 4 (1.5%) 3 (1.2%) Patients experiencing CHF progression during study 35 (13.4%) 21 (8.2%) Congestive heart failure events leading to hospitalization that occurred during the PROactive trial are summarized in Table 5 . Table 5. Treatment-Emergent Adverse Reactions of Congestive Heart Failure (CHF) in PROactive Trial Number (%) of Patients Placebo N=2633 Pioglitazone N=2605 At least one hospitalized congestive heart failure event 108 (4.1%) 149 (5.7%) Fatal 22 (0.8%) 25 (1%) Hospitalized, nonfatal 86 (3.3%) 124 (4.7%) Cardiovascular Safety In the PROactive trial, 5238 patients with type 2 diabetes and a history of macrovascular disease were randomized to pioglitazone (N=2605), force-titrated up to 45 mg daily or placebo (N=2633) in addition to standard of care. Almost all patients (95%) were receiving cardiovascular medications (beta blockers, ACE inhibitors, angiotensin II receptor blockers, calcium channel blockers, nitrates, diuretics, aspirin, statins and fibrates). At baseline, patients had a mean age of 62 years, mean duration of diabetes of 9.5 years and mean A1C of 8.1%. Mean duration of follow-up was 34.5 months. The primary objective of this trial was to examine the effect of pioglitazone on mortality and macrovascular morbidity in patients with type 2 diabetes mellitus who were at high risk for macrovascular events. The primary efficacy variable was the time to the first occurrence of any event in a cardiovascular composite endpoint that included all-cause mortality, nonfatal myocardial infarction (MI) including silent MI, stroke, acute coronary syndrome, cardiac intervention including coronary artery bypass grafting or percutaneous intervention, major leg amputation above the ankle and bypass surgery or revascularization in the leg. A total of 514 (19.7%) patients treated with pioglitazone and 572 (21.7%) placebo-treated patients experienced at least one event from the primary composite endpoint (hazard ratio 0.90; 95% Confidence Interval: 0.80, 1.02; p=0.10). Although there was no statistically significant difference between pioglitazone and placebo for the three year incidence of a first event within this composite, there was no increase in mortality or in total macrovascular events with pioglitazone. The number of first occurrences and total individual events contributing to the primary composite endpoint is shown in Table 6 . Table 6. PROactive: Number of First and Total Events for Each Component Within the Cardiovascular Composite Endpoint Placebo N=2633 Pioglitazone N=2605 Cardiovascular Events First Events n (%) Total Events n First Events n (%) Total Events n CABG=coronary artery bypass grafting; PCI=percutaneous intervention Any Event 572 (21.7) 900 514 (19.7) 803 All-Cause Mortality 122 (4.6) 186 110 (4.2) 177 Nonfatal Myocardial Infarction (MI) 118 (4.5) 157 105 (4) 131 Stroke 96 (3.6) 119 76 (2.9) 92 Acute Coronary Syndrome 63 (2.4) 78 42 (1.6) 65 Cardiac Intervention (CABG/PCI) 101 (3.8) 240 101 (3.9) 195 Major Leg Amputation 15 (0.6) 28 9 (0.3) 28 Leg Revascularization 57 (2.2) 92 71 (2.7) 115 Weight Gain Dose-related weight gain occurs when pioglitazone is used alone or in combination with other antidiabetic medications. The mechanism of weight gain is unclear but probably involves a combination of fluid retention and fat accumulation. Edema Edema induced from taking pioglitazone is reversible when pioglitazone is discontinued. The edema usually does not require hospitalization unless there is coexisting congestive heart failure. Hepatic Effects There has been no evidence of pioglitazone-induced hepatotoxicity in the pioglitazone controlled clinical trial database to date. One randomized, double-blind, three-year trial comparing pioglitazone to glyburide as add-on to metformin and insulin therapy was specifically designed to evaluate the incidence of serum ALT elevation to greater than three times the upper limit of the reference range, measured every eight weeks for the first 48 weeks of the trial then every 12 weeks thereafter. A total of 3/1051 (0.3%) patients treated with pioglitazone and 9/1046 (0.9%) patients treated with glyburide developed ALT values greater than three times the upper limit of the reference range. None of the patients treated with pioglitazone in the pioglitazone controlled clinical trial database to date have had a serum ALT greater than three times the upper limit of the reference range and a corresponding total bilirubin greater than two times the upper limit of the reference range, a combination predictive of the potential for severe drug-induced liver injury. Hypoglycemia In the pioglitazone clinical trials, adverse reactions of hypoglycemia were reported based on clinical judgment of the investigators and did not require confirmation with finger stick glucose testing. In the 16 week add-on to sulfonylurea trial, the incidence of reported hypoglycemia was 3.7% with pioglitazone 30 mg and 0.5% with placebo. In the 16 week add-on to insulin trial, the incidence of reported hypoglycemia was 7.9% with pioglitazone 15 mg, 15.4% with pioglitazone 30 mg and 4.8% with placebo. The incidence of reported hypoglycemia was higher with pioglitazone 45 mg compared to pioglitazone 30 mg in both the 24 week add-on to sulfonylurea trial (15.7% versus 13.4%) and in the 24 week add-on to insulin trial (47.8% versus 43.5%). Three patients in these four trials were hospitalized due to hypoglycemia. All three patients were receiving pioglitazone 30 mg (0.9%) in the 24 week add-on to insulin trial. An additional 14 patients reported severe hypoglycemia (defined as causing considerable interference with patient's usual activities) that did not require hospitalization. These patients were receiving pioglitazone 45 mg in combination with sulfonylurea (N=2) or pioglitazone 30 mg or 45 mg in combination with insulin (N=12). Urinary Bladder Tumors Tumors were observed in the urinary bladder of male rats in the two year carcinogenicity study [see Nonclinical Toxicology (13.1) ]. During the three year PROactive clinical trial, 14 patients out of 2605 (0.54%) randomized to pioglitazone and 5 out of 2633 (0.19%) randomized to placebo were diagnosed with bladder cancer. After excluding patients in whom exposure to study drug was less than one year at the time of diagnosis of bladder cancer, there were six (0.23%) cases on pioglitazone and two (0.08%) cases on placebo. After completion of the trial, a large subset of patients was observed for up to ten additional years, with little additional exposure to pioglitazone. During the 13 years of both PROactive and observational follow-up, the occurrence of bladder cancer did not differ between patients randomized to pioglitazone or placebo (HR =1.00; 95% CI: 0.59-1.72) [see Warnings and Precautions (5.7) ] . Laboratory Abnormalities Pioglitazone Hematologic Effects Pioglitazone may cause decreases in hemoglobin and hematocrit. In placebo-controlled monotherapy trials, mean hemoglobin values declined by 2% to 4% in patients treated with pioglitazone compared with a mean change in hemoglobin of -1% to +1% in placebo-treated patients. These changes primarily occurred within the first four to 12 weeks of therapy and remained relatively constant thereafter. These changes may be related to increased plasma volume associated with pioglitazone therapy and are not likely to be associated with any clinically significant hematologic effects. Creatine Phosphokinase During protocol-specified measurement of serum creatine phosphokinase (CPK) in pioglitazone clinical trials, an isolated elevation in CPK to greater than ten times the upper limit of the reference range was noted in nine (0.2%) patients treated with pioglitazone (values of 2150 to 11400 IU/L) and in no comparator-treated patients. Six of these nine patients continued to receive pioglitazone, two patients were noted to have the CPK elevation on the last day of dosing and one patient discontinued pioglitazone due to the elevation. These elevations resolved without any apparent clinical sequelae. The relationship of these events to pioglitazone therapy is unknown. Postmarketing Experience Alogliptin The following adverse reactions have been identified during the postmarketing use of alogliptin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Acute pancreatitis, hypersensitivity reactions including anaphylaxis, angioedema, rash, urticaria and severe cutaneous adverse reactions, including Stevens-Johnson syndrome, hepatic enzyme elevations, fulminant hepatic failure, severe and disabling arthralgia and bullous pemphigoid, diarrhea, constipation, nausea and ileus [see Warnings and Precautions (5.2 , 5.3 , 5.4 , 5.10 , 5.11) ] . Pioglitazone The following adverse reactions have been identified during the postmarketing use of pioglitazone. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure. New onset or worsening diabetic macular edema with decreased visual acuity [see Warnings and Precautions (5.9) ] . Fatal and nonfatal hepatic failure [see Warnings and Precautions (5.4) ]. Postmarketing reports of congestive heart failure have been reported in patients treated with pioglitazone, both with and without previously known heart disease and both with and without concomitant insulin administration. In postmarketing experience, there have been reports of unusually rapid increases in weight and increases in excess of that generally observed in clinical trials. Patients who experience such increases should be assessed for fluid accumulation and volume-related events such as excessive edema and congestive heart failure [see Boxed Warning and Warnings and Precautions (5.1) ]. Drug Interactions Alogliptin Alogliptin is primarily renally excreted. Cytochrome (CYP) P450-related metabolism is negligible. No significant drug-drug interactions were observed with the CYP-substrates or inhibitors tested or with renally excreted drugs [see Clinical Pharmacology (12.3) ] . Strong CYP2C8 Inhibitors Pioglitazone An inhibitor of CYP2C8 (e.g., gemfibrozil) significantly increases the exposure (area under the concentration-time curve [AUC]) and half-life of pioglitazone. Therefore, the maximum recommended dose of pioglitazone is 15 mg daily if used in combination with gemfibrozil or other strong CYP2C8 inhibitors [see Dosage and Administration (2.3) and Clinical Pharmacology (12.3) ] . CYP2C8 Inducers Pioglitazone An inducer of CYP2C8 (e.g., rifampin) may significantly decrease the exposure (AUC) of pioglitazone. Therefore, if an inducer of CYP2C8 is started or stopped during treatment with Alogliptin and Pioglitazone Tablets, changes in diabetes treatment may be needed based on clinical response without exceeding the maximum recommended daily dose of 45 mg for pioglitazone [see Clinical Pharmacology (12.3) ] . USE IN SPECIFIC POPULATIONS Pregnancy Risk Summary Limited data with Alogliptin and Pioglitazone Tablets in pregnant women are not sufficient to inform a drug-associated risk for major birth defects or miscarriage. There are risks to the mot amazing


accountable for Alogliptin and Pioglitazone Tablets freshmen


EmoticonEmoticon